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Abstract. The use of the Principal Component Analysis technique for the analysis
of geophysical time series has been questioned in particular for its tendency to extract
components that mix several physical phenomena even when the signal is just their
linear sum. We demonstrate with a ‘data simulation experiment that the Independent
Component Analysis, a recently developed technique, is able to solve this problem.
This new technique requires the statistical independence of components, a stronger
_constraint, that uses higher-order statistics, instead of the classical decorrelation, a
weaker constraint, that uses only second-order statistics. Furthermure, ICA does not
require additional a priori information such as the localization corstraint used in

Rotational Techniques.



1. Introduction

This work concerns methods for the identification of the physical causes of
variability of a given dynamical system from observations of its behavior. In many
cases, an observed time series is produced by a mixture, linear or nonlinear, of different
components representing different physical phenomena. In the linear case, the time

series x(j) with temporal dimension, N, at particular spatial coordinate (we will call

this a pixel), j € {1,..., M}, where M is the spatial dimension, is decomposed .n time
as:

:x:(]) =G'o'=9101(j)+9202(j)+---+9QUQ(j)a (1)
where the temporal base functions, g;,...,gg, the columns of matrix G, are unknown

time series describing a fixed dynamical behavior (vectors and matrices are indicated in
bold characters). In this paper, we consider decomposition in time, but the following
discussion would be the same for a decomposition in space. Each g; could be a signal
with a different physical cause operative in a particular geographical region represented
by a different score map {oi(7) ; j=1,... M}. One goal of an analysis is then to infer

the unknown contributing components from the observed data, . In the linear case
h=J z~o, (2)

where J is an estimate of the unknown matrix G™! and h is an estimate of the
unknown vector o. Statistical analysis methods that estimate J and h are called
component extraction techniques. Their ability to retrieve good estimates, h, of the true

components, o, is highly dependent on the quality of the statistical dataset used (i.e.



sufficiently large number of independent examples sampling all the variations involved)
and on the technical assumptions that are made about J and h.

A common approach is to require the decorrelation of the extracted components (i.e.,
any two components are orthogonal): the covariance matrix of extracted components
< h'-h > is constrained to be diagonal; but this decorrelation principle has an infinity

of solutions:

J=0.J,, (3)

where © is an undetermined Q x Q matrix so that ©!- © = Igvg. Jo=X"V2. E
is a @ x N matrix with ¥ the truncated diagonal matrix of the higher eigenvalues of
<z' x> and E the N x Q matrix with the associated normalized eigenvectors in the
columns.

One particular decorrelation solution is the well-known Principal Component
Analysis (PCA) or, in the geophysical community, Empirical Orthogonal Function
(EOF), first used in atmospheric sciences by Lorenz (1951). In this technique, an
additional constraint is added to resolve the indeterminacy of the decorrelation solutions:
the successive extracted components have to explain the maximum remaining variance.
This solution is given by taking © = I ¢ox@ in Equation (3). Three problems could
arise in using the PCA teechnique. (1) Even if the mixing of the components is linear
as in Equation (1), this maximum-explained-variance assumption can cause mixing
of different physical phenomena in the extracted components (Kim and Wuy, 1999) as

we will show here (see Figure 1-A for an schematic illustration of this problem in a
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2-dimentional case). (2) This mixing problem is also particularly serious when the
PCA is applied to data that have more than one component with about the same
variance. In this case, the problem is not solvable since any orthogonal rotation of the
principal components will be a PCA; solution (Figure 1-B). (3) Since PCA imposes the
orthogonality of the base functions it extracts, mixing problems also arise when the
actual physical base functions are uot orthogonal (Figure 1-C).

The PCA assumptions (linearity, variances explained by the components or
orthogonality) used to resolve the solution indeterminacy are not known, a priori, to be
valid for a particulaf dataset. It these PCA assumptions are not valid, variations that
are not physically connected could be artificially gathered together into one extracted
component. This is the reason why PCA is often used in restricted geographical
domains instead of global domains to try to isolate a single dominant mode of variation,
wich PCA can correctly identify. Consequently, even if PCA is useful as a tool for
compressing information by describing the most variance with the fewest terms in an
expansion, it can lead to misinterpretation of physical relationships.

Rotational Techniques (RT) were introduced (Horel 1981, Richman 1981), in part,
to obtain a solution-more physically intérpretable. In these approaches, an additional
constraint of localization, based on the so called “simple structure” principle, is used
to solve the indeterminacy of the decorrelation solutions. There exist many proposed
criteria for this purpose: quartimax, varimax, transvarimax, quartimin, oblimax, etc
(Richman 1986). Two distinct classes of RT solution could be distinguished: the

Orthogonal Rotations that preserve the orthogonality constraint of the components,



and the Oblique Rotations that relaxe this constraint. However, the localization criteria
used in both family of solutions are quite subjective and use of such a priori information
may not be well suited to all applications.

The Independent Component A;lalysis (ICA) method, briefly described in Section
2, is based on information theory and has been recently developed in the context of
signal processing studies and of the development of neural coding models (Bell and
Sejnowski 1995). The two major distinctions between the ICA approach and the

classical techniques are:

e The assumption of a linear mixture model is not required so an orthogonality
constraint is not applied. However, the example presented here happens to be one

where the signal is composed of the linear sum of components as in (1).

e The method extracts statistically independent components, even if these
components have a non-Gaussian probability distribution function, by making
use of higher order statistics, whereas the PCA or RT approaches use only

second-order - statistics.

We argue that the ICA approach is a particularly promising technique which may
overcome the main pitfalls of the standard techniques (PCA or RT) for geophysical time
series analysis. When faced with observations of a system with unknown dynamics,
identifying the statistically independent variation mode seems more likely to be

meaningful than assuming, a priori, that the system is composed of linearly mixed,



orthogonal modes unless such modes ca be shown to be present form other information
(North 1984). Moreover, if one or two modes are not known, a priori, to be dominant,
then maximizing the variance explained by each mode as in PCA produces inappropriate
mixing. Using other subjective crite1‘"ia also seems difficult to justify. Hence, the classical
techniques can be used in situations where additional information is available to justify
their assumptions as useful approximations, but they cannct be used to search for new
understanding of the system dynamics because they make such strong assumptions
about it. ICA, by finding statistically independent modes, may provide a better way
to explore the dynamics of a system, like the atmosphere-ocean system, that is known
to involve non-linear coupling of many modes across a wide range of space-time scales;
however, even statistical independence is only a guide to the system’s behavior.

A previous study that applies ICA to the analysis of variations of tropical sea
surface temperature (Aires et al. 2000) illustrates the potential of the ICA technique
to separate a geophysical time series into more meaningful components. To illustrate
more clearly how ICA handles the component mixing problem, we construct a synthetic
dataset, where the true answer to the decomposition problem is known, and apply both
PCA and ICA to extract components (Section 3). We deliberately devise a dataset to
test whatever PCA can separate distinct modes of variation that are added linearly as
many practitioners appear to expect. We show that, even in the case of a linear sum of
components, the PCA technique mixes the contributions, but that the ICA method can

correctly separate the components without additional subjective constraints like those

used in RT.



2. The Independent Component Analysis technique

In this section, we briefly review the main concepts underlying the Independent
Component Analysis (ICA) technique. For more details, the interested reader is referred
to Bell et al. (1995) and Aires et al‘. (2000). The ICA technique aims to extract
statistically independent components, a stronger constraint than the deccirelation
requirement of the classical techniques. The statistical independence of vwo variables A,

and h; is determined when their joint distribution can be factored:
P(hy, hy) = P(hy) - P(hy). (4)

This constraint involves higher-order statistics whereas the decorrelation constraint only
involves second-order statistics. Decorrelation is equivalent to statistical independence
only in the Gaussian case. So the higher-order statistics are particularly important
when the analyzed data have components with non-Gaussian distributions. Avoiding
the a prior: assumption that second-order statistics are sufficient is important when
the components are unknown as is usually the case. It is also important to not confuse
the non-Gaussian character of the components with the non-Gaussian character of
the data itself; however, if the data have a non-Gaussian distribution, then at least
one component is also non-Gaussian, since for the simplest linear mixture of Gaussian
components, the distribution would be Gaussian (a non-linear combination of Gaussian
distributions could be non-Gaussian). Some previous studies examine this non-Gaussian
behavior in the data (Burgers and Stephenson 1999, Aires et al. 2000). Without a

priort information on this matter, the use of ICA is recommended since its requirement



of statistical independence is more general than the decorrelation assumption.

The time series observations are gathered into a dataset X ;' of M observations
z(j)=(z;'; t=1,...,N) with j € {1,..., M}, where M is the spatial dimension
of the time series and N is its temp;)ral dimension. The times series x(j) is assumed
to be a mixture, linear or nonlinear, of several statistically independent components
o={o;; t=1,...,Q}:

z(j) = Ale(4)) (5)

where A is an unknown mixture function, which is, by hypothesis, non-singular (i.e. it
can be inverted).

The goal of ICA is to retrieve a function ¢ : € — h, where h is an estimate of &
and the terms {h; ; ¢ =1,...,Q} are statistically independent. The estimate, h, is

defined as a deterministic function (linear or not) of the observations:
hi=q)i(Wi,$); i=1,...,Q (6)

where {W;; i=1,...,Q} is the set of parameters of . The number of components,
Q, is here supposed to be known (this number can be estimated by a break in the
frequency spectrum “of the data, for exémple). With real observations, @ depends

on the analysis objectives: extracting a lot of components allows for more complete
description of the variability but makes the interpretation much more complicated,
whereas extracting fewer components focuses attention on fewer different phenomena at

the cost of explaining less of the variability. The interested reader should refer to an

article by Nadal et al. (1999).



10

The parameters, W, are estimated by applying a gradient descent algorithm to
a cost function that specifies the statistical independence of the {hi; i=1,...,Q}
Different equivalent cost functions could be used; we focus here on the infomaz approach
to ICA (Nadal and Parga 1994) from which simple algorithms have been derived (Bell
and Sejnowski 1995). Information theory is used to specify the statistical independence
cost function: the fundamental quantity used here is information redundancy. Given Q
variables, hy, ho, ..., hq, the information redundancy R(hy, hy, ... ,hg) is defined as the
Kullback divergince between the joint distribution P(hy, ks, ..., hg) and the factorized
distribution P(h;) - P(hy) ... P(hg):

/+°° Il dh Pa(h lognp"g‘()h)

This information redundancy comes from information theory and measures the
difference between the joint and the factorized distribution: when the redundancy
R(h) =0, Py(h) = [I<, P(h;), which means, by the definition in equation (4), that the
components of vector h are statistically independent.

The use of a gradient descent algorithm to minimize this cost function is interesting
since it allows for the introduction of any a prior: information about the solution that
may be available. For such a purpose, a second term in the quality criterion is added
that represents any additional constraint(s) on the solution. For example, this additional
information could be a constraint on the shape of the solutions, on the distance of
the solution from a first guess, or on the regularity properties of the solution. Such a

regularization approach, also used in variational assimilation methods for example, is a
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classical way of using all the information that is available.

A nonlinear regression model for the extraction model in Equation (6) has to be
specified. The Multi-Layer Perceptron (MLP) is often chosen: this artificial Neural
Network model is preferred for its n.onlinear behavior. In this experiment, we use a
simple MLP architecture with no hidden layer. This neural mapping is defined by (from
right to left in Figure 2):

y=f(h)=f(J =), (8)

where f, the logistic function, is only used for algorithmic considerations. The extracted
components are not 1‘:he outp 1t y or the neural mapping (8), but the vector h = J - z.
We use this model because thLe mixture model is linear (the nonlinear mixture case will
be the subject of future work).

With the redundancy reduction criterion and no-hidden-layer architecture, an

algorithmic implementation of the ICA has been found (Bell and Sejnowski 1995):
Adi o Jie + §i - 3 Ju - b (9)
!
where

Do 0, oy
¥ = By,- ah, - Bh, Bh,

) =1-2y. (10)
This algorithm is described in a more practical way in the appendix. !

1See also the web page http://www.cnl.salk.edu/ tewon/ica_cnl.html of the Compu-
tational Neuroscience Laborabory of Terry Sejnowski at The Salk Institute for links to

recent literature, software and demos concerning the ICA paradigm.
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3. Application to a linear sum of components
a. Construction of the synthetic dataset

The synthetic dataset used in this stﬁdy is generated to mimic the results of that
are often expected from a PCA decomposition. For this purpose, ) = 6 components
representing six different dynamical phenomena are used. Each component is described
by a different temporal base function g; (solid lines in Figure 3) constructed from
composites of sinusoids with different frec aencies and phasss. These base functions have
been normalized to give a standard devic.tion of unity; i.e.. each component accounts
for a similar amount‘ of temporal variance. The temporal dimension of these base
functions is taken to be N = 365 (e.g., one year of daily data). A spatial resolution
of 2.5% x 2.5° is chosen, corresponding to M = 144 x 72 = 10368 pixels. Finally, the
dataset, X;* = {z(j) e RV ; j=1,..., M}, where RV is the space of real vectors of
dimension N, N = 365 and M = 10368, is formed from the time series z(j) for each
pixel j by the linear sum of the base functions, (j) = g,0,( ) +... + 9ooq(j) +¢
(linear model of Eq. 1). The term ¢ is a Gaussian-distributed noise (zero mean and
standard-deviation of 0.5), representing very noisy data.

The {0;(j) ; f z =1,.. ., @} indicate the strength of each component, i, at each
pixel, j. These strengths are constructed to have a geographical Gaussian distribution,
giving a different ellipsoidal distribution for each component (left column in Figure 4).
Land contours are shown for easier description of the modes. One of the components

has two peaks in its spatial distribution to represent a teleconnection pattern (map of
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component 1 in left column of Figure 4), so the total number of ellipsoidal peaks is
seven. Also, the geographical extert of two of the components overlaps in the Indian
Ocean (maps of components 4 and 6 in left column of Figure 4) to complicate the
component extraction process.

The variance explained by th: Q = 6 components and the variance from the added
noise are shown in Table 1. The variance explained by the components represents 67 %
of the total variance and the nois«: represents 33 %. The variance of a component results
from the combination of the temporal variability of t1e base function as a function of
amplitude (that has ‘been normelized here) and frequ ncy, and the spatial extent of the

component.

b. Results of PCA and I1CA

The PCA components ar: determined by computing the matrix Jo. The best
number of PCA components to extract is determined by observing the spectrum of
cumulative percent of varian-e explained by the PCA components (Figure 5). The first
Q = 6 PCA components represent 67.7 % of the total variance and the 359 remaining
components that explain 32 3 % of the total variance represent the noise in the dataset.
The temporal PCA base fuactions (crossed lines in Figure 3) are each compared with
the real base function to which it best corresponds. PCA base functions 2, 3 and 4
provide a relatively good estimate of the true functions, although there are some errors
near the peak values. PCA temporal base functions 1, 5 and 6 (low frequencies) are

much worse fits. In particular, higher frequencies have been mixed in with the real
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base functions. The corresponding PCA score maps are defined at pixel j by the values
(01,...09)(j) = Jo - X,* and are shown in Figure 4 (middle column), where X;"is
the 7 column of data matrix X . We see that the PCA (or EOF) technique confuses
elements from the different componénts, the general mixing problem, such that all

of its components exhibit many more geographic peaks than in the real components.
Even if the corresponding PCA temporal base function is relatively well retrieved, the
'corresponding score map still exhibits the mixing problem (see PCA base function No 2
in Figure 3 and the corresponding PCA score map in Figure 4). Oi.e cause of the mixing
is well illustrated in Table 1 where the variance explained by eacl. PCA components
is compared to the variance of the actual components. The first PCA component
explains 24.4 % of the total variance, which is much more than tlie true variance of
13.3 %. The variance maximization constraint on the solution in PCA means that the
first component is the mixture of many true component variabilities, whereas the 6
PCA component represents only 3.1 % which is a considerable under-estimate of the
real value of 10 %. The noise level estimate of 32.3 % is a good estimate, but its small
under-estimate of the real noise is due to the projection of noise into the first 6 PCA
components (représenting 0.7 %).

This mixing tendency of the PCA could suggest many more teleconnections in
observations than are actually present. Since all six components contribute the same
amount of variance, the PCA technique has combined many of the actually-separate
components into several of its components, trying to maximize the amount of variance

explained by each. However, the method is then compelled to alternate positive and
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negative values to compensate for having too much variance when the components are
added back together. This effect is especially apparent for the overlapping components
in the Indian Ocean: two PCA base functions possess broad central peaks spanning
the geographic distribution of both of the real components and two others possess, in
this same location, two opposite-signed peaks (see PCA score maps of components 1,4,
5 and € in Figure 4, middle column). A similar projection of real components into
more than one PCA component occurs when a geographically isolated mode moves
during the time period (Kim and Wu 1999). Moreover, the component with tivo peaks
in the Americas, representing a real teleconnection, shows up in four of the >CA
components (components 1, 3, 4 and 6 in Figure 4, middle column), but mixed with
other components as well, suggesting teleconnections between the Americas and the
South Atlantic and Indian Oceans that do not exist.

For the ICA, a “whitening” procedure is applied first using the PCA solution: the
observed data, x(j), are projected onto the first Q@ = 6 PCA components using the
matrix Jo. The ICA technique is then applied to the “whitened” data, (j) = Jo - z(j)
(dimension @ = 6 instead of N = 365). This is equivalent to performing an oblique
rotation on the PCA initial solution, see (Nadal et al. 1999, Aires et al. 2000). Thus
the 6 ICA extracted components explain the same amount of variance as the 6 PCA
components (67.7 %).

The six ICA base functions are shown in Figure 3 (dotted lines). The ICA base
functions are very similar to the real base functions; this comparison shows how the

ICA technique has corrected its first guess (the PCA solution) to be closer to the true



16

temporal base functions. The additional information conveyed by the requirement of
statistical independence is nicely illustrated: the ICA solution is better than the PCA
solution for all six components. The ICA score maps are presented in Figure 4 (right
column). The presence of large-amr;litude noise amplifies the ambiguity, producing
weak mixing of the components (see the score map for component 5, for example); but
generally, the components are well retrieved and separated, even the teleconnection
mode (ICA component 1 in Figure 4, right column) and the two overlapping modes in
the Indian Ocean (ICA component 4 and 6 in Figure 5, right column). The ICA score
maps are always an improvement over the PCA solution. When the noise is removed,
the ICA separates the original six modes very cleanly with very little mixing; thus, in
practice, if the noise amplitude is significantly smaller than the signal amplitude, the
ICA solution is very close to the real solution.

Table 1 shows that the variance explained by the ICA components is closer to
the real solution than the PCA components. Differences between the true and ICA
explained variance for each components are less than 0.6 %. Discrepancies are the result

of the projection of some part of the noise into the ICA components.

4. Concluding remarks

PCA (or EOF analysis) provides an economical way to summarize or characterize
the complex time and regional variations of a geophysical parameter over the whole
globe with only a few functions. When the total time variance is dominated by one

or two separate orthogonal modes that add approximately linearly and with different
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variances, then this analysis can also correctly identify such modes. However, PCA is
now routinely applied to the study of atmospheric observation anomalies, which are
defined as deviations from the average leading mode, the annual cycle. There are three
problems. (1) The annual cycle, itself, cannot always be described by a single EOF
mode (e.g., Rossow et al. 1993), indicating that its phase and/or regional distribution
are varying over the time record o that the mean annual cycle is only an approximation
to the actual annual cycle in a given year. (2) The several anomalies that have been
identified by removal of the mean annual cycle generally only account for a few percent
of the total variance and are not a lot larger than data noise. (3) The fluid dynamics
of the atmospheric circulation strongly couples motions on different space and time
scales, i.e., the separate modes combine non-linearly to produce the total time signal.
The latter fact means that the annual cycle is constantly interacting non-linearly with
atmospheric variations on a whole range of other time scales, so that the removal of
the mean annual cycle from a dataset‘leaves behind a residual that is only a partial
representation of these physical interactions, producing an artificial mode from the
analysis method. Thus, there is every reason to suspect that the assumptions that
underlie the PCA are violated when applied to atmospheric circulation anomalies. This
leads to the worry that the anomalies that have been identified and studied are not
physical, but are either created by the mixing of many separate physical modes having
similar amplitudes, but different regional distributions and interacting non-linearly, or
by the mixing (aliasing) of the annual cycle into other modes by observation errors. Qur

simple example shows how extra modes can be generated by regional overlaps between



18

two different modes and how spurious teleconnections can be found where none exist
or distorted where they do exist, even when the modes add linearly, (i.e., favorable
condition for the PCA).

Our simple linear example also shows the potential of the ICA technique for
separating a complex signal in a more meaningful way. The mixing problem inherent
in the PCA technique and the artifacts prod-iced by the orthogonality and maximum
variance constraints of PCA are avoided with the ICA approach. Moreover, the use of
higher-order statistics to determine statistical independence assumes much less about
the character of the parameter distributions than the PCA. In the case where the
components of the system are linked in a certain way (the climate is certainly closer to
this model), the ICA would be able to extract components that are a kind of prototype,
defined to be as statistically distinct as possible, for an optimal description of the
variability in the observations. This means that ICA, solving the mixing problem, is
more suitable for global studies, which is not the case of PCA.

As with the classical PCA technique, this first ICA algorithm is not able to deal
correctly with propagating components. But the ICA paradigm may be a sufficiently
general concept to-be used in a more sophisticated way like complex ICA or nonlinear
ICA. Our experiment on synthetic data, where the solution of the component extraction
problem is known, encourages further work to extend the ICA paradigm to non-linear
cases: this requires development of non-linear solution algorithms and testing for cases
where the combination of modes is non-linear, when components are physically linked,

and for cases with propagating modes.
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Appendix: Principal steps of the algorithm

We adopt here the linear model * = G - &, where « is the observation, G is the
base function matrix and o is the vector of components to estimate. The goal of the
statistical decomposition technique is to estimate a matrix J = G, the filter matrix,
using only a dataset of observations {z®; e = 1,...,E}, where E is the number of
samples in the dataset. With this matrix J, for each observation x, the components o
are estimated by h = J - x, and the base function matrix G is estimated by the inverse
matrix J .

The principal stéps of the time series analysis by the ICA technique are:

e Pre-processing of dataset: The dataset X;' = {z(j) € R¥ ; j=1,..., M}, where
t is the time index and j is the space index (geographical locations), often requires a

pre-processing step:

spatial, temporal or spatio-temporal interpolation to resolve missing data

problems,

filtering of data to suppress undesirable frequencies,
- de-trending to0 obtain a stationary data,

removing the annual cycle to examine interannual anomalies.

None of these steps is required. For example, we have commented in the paper on the

dangers of removing the annual cycle.

e Chose the space for the decomposition:



in time, which is the approach we have adopted in our study: z(j) =

9101(7) + ...+ 9q00(j) + ¢,
- in space,

in frequency,

in a mixture of these spaces.

The observations (a time series or a geographical field, ...) are noted, in the following,
by the d-dimensional vector ¢ and the dataset is {z¢; e=1,... ,E}.

e Center the datas}et: The observation mean < x® > is removed from the dataset:
z¢ - z°~ < x° >. This step is necessary for statistical techniques where data are
supposed to have zero-mean.

¢ Normalize the dataset: If the user wants to put the same statistical weight on each
coordinate of the observation ¢ (that could be a date in time decomposition, a pixel
location in space decomposition, . .. ): observations in the dataset are normalized by the
standard-deviation vector z¢ + z¢/e,.

e Eigen-vector decomposition: The covariance (or correlation, in the case of
normalized obserﬁﬁbns) matrix < z'-x > is estimated from the dataset. The
eigen-values A (diagonal matrix) and the eigen-vector matrix V of < z* - « > are then
computed using a classical numerical routine. The number of PCA or ICA extracted
components @ is chosen by observing the spectrum of eigen-values.

¢ PCA solution:
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- The d x Q PCA base function matrix Gpc4 contains in its columns the first
Q eigen-vectors of V (the columns of V' represent time series in the time

decomposition, and geographical field in the space decomposition, ... ).

- Since, by definition, V! = V! the filter PCA matrix Jpca is equal to the
transposed Q x d base function matrix Gpca. Then, the extracted components h
that estimate the true components o are the projection of the observation  onto

the filters: h = Jpca - .

- The first Q eigen-values in A represents the variability explained by each of the Q

components.
e {CA solution:

1 Pre-whitening of dataset: The PCA solution is used for a pre-processing data step:
the observations z¢ are projected into the PCA filters: & <~ Jpc4 - €°. The ICA

algorithm is then applied into these Q-dimensional data.

2 The ICA solution J;c4 is initialized as the identity matrix Igxq. This, associated
to the previous whitening step of data, is equivalent to taking the PCA solution

as first guess for ICA.

3 For the minimization of the criterion specifying the statistical independence, a
stochastical gradient descent algorithm is used. The stochastical principle uses
the gradient descent formula iteratively in unique random samples of the dataset,

contrary to the classical approach where the gradient descent formula is applied
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iteratively to the global dataset (i.e. a deterministic algorithm). The stochastical
character of an optimization algorithm allows theoretically, under some constraint
not discussed here, for the optimization technique to reach the global minimum of
the criterion instead of the loc‘al minimum where a deterministic algorithm could

be trapped.

An observation z¢ is randomly chosen in the dataset. The propagation through
the newal network (chosen model for the extraction component) is given by:

y = f(h) = f(Jica- x°), where f(a) = 1/1 + ezp(—pf - a) is the logistic function
(3 is a parameter controlling the slope of the logistic function, we take § = 2.0).
The FORTRAN routine of this process is:

C - - propagation into the neural network

doi=1,d

h(i) = 0.d0

dok=1,d

h(i) = h(i) + Jrca(i, k) * z°(k)

enddo

h(i) = h(i) + bia(i)

y(i) = 1.d0/(1.d0 + dezp(—f * h(i)))
enddo

where bia is the classical bias vector in a MLP neural network (not shown in the
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text for simplicity). We use, in this routine, double precision variables to avoid

numerical instabilities.

5 The learning process is then defined as:

¢ - - transitory quantities

doj=1,d
hhh(j) = 0.d0
dok=1,d

hhh(j) = hhh(j) + Jica(k, j) * h(k)
enddo
enddo
¢ - - modification of weights
doi=1,d
doj=1,d
Jica(t,3) = Jica(i, j) + paramx
& .(.J}CA('i,j) + 3 (l.dO'— 2.d0 * y(3)) * hhh(j))
enddo
bia(i) = bia(i) + 0 * (1.d0 — 2.d0 * y(7))

enddo
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where param is the learning param: ter of the gradient descent optimization (we

take param = 0.0005).

6 Stopping criterion: many criteria can be used to define when stopping the previous
learning steps. The simplest criterio.1 is to determine a priori the number of
learning steps. A better adequate cr terion is the measure of the difference
between solution J;c4 at time t and at time £ + 1: if this difference is low,
the algorithm has converged. Arother stopping criterion is the measure of the
statistical independence of the extract« 1 components h: cumulants (i.e. additive
higher-order moments) are a practical ' -ay to do that, but this approach is still
computationally expensive. The learnir. 3 algorithm returns to step 4 until the

stopping criterion is reached.

e Analysis of results: When the matrix J;c,4 has been determined by ICA, the global
ICA filters (taking into account the PCA pre-processing) are defined by the Q x d

matrix: Jgro = Jica - Jpca
- The projection of data is used to estimate e components: h = Jg10 - T°

- The d x @) ICA base function matrix Gg; ; = JGLO—I = Gpca - J]CA_I is

normalized to obtain normalized ICA base functions, as in PCA approach.
- Computation of explained variance of each of the base functions.
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Figure 1. Problems encountered by PCA when observations have dimension 2 (coor-
dinates X and Y) and come from two components defining ellipses E1 and E2, the line
D represents the first PCA axe defining the first PCA component: A) mixing due to
the maximum explained constraint, B) indeterminacy when two components have same

variance, and C) mixing due to the non-orthogonality of components.

Figure 2. Tie component extraction model: the perceptron architecture, where « is

the observation, h is the extracted component vector and h is the ouput network.

Figure 3. Temporal base functions g;; ACTUAL (solid lines), PCA estimates (crossed

lines) and ICA estimates (points).

Figure 4. The components score maps of actual components o; (left column), of che
PCA extracted components h; (middle column), and of the ICA extracted components
h; (right column): components number 1-6 from the top to the bottom, colors from the
blue to the red (rainbow) representing range 0-1 for actual amplitudes (left colum) and

-3 to +3 for extracted components amplitudes (middle and right column)

Figure 5. Cumulative percent of explained variance by the PCA components



Table 1. Variance explained by
Noise, REAL, PCA and ICA com-

ponents

Component | REAL PCA ICA

1 13.3 244 127
2 126 145 13.0
3 10.7 10.7 11.3
4 10.7 8.8 10.2
5 10.7 6.2 10.3

6 10.0 3.1 10.0

Noise 33.0 323 323




A)

B)

C)







9 ON NOLLONNM ASVE 'TVHOJWEL

aLva
05t 00¢ (24 o 051 ool 05

€ ON NOLLONNY 3ASva TVHOIWIL

NOLLONNY ASYd

NOLLON(I 3SVH

aiva

os¢ [ 05T 00T osI 001

§ ON NOLLONNA ASVE TVHOdWIL

aLva
0s¢ 00t 05T (14 ost oot

. vod i
— v

TON NOLLONNS ASVE TVHOIWIL

NOLLONN{ ASYY

NOLLONI4 3Svd

iLva
(7% 00t 057 (4 oS! oot [

# ®N NOLLONN 3SVE TYHOJWAL

0S¢ 00t 0§ 007 o5t ool o

—_ «M«Mz : &\ L

1 ON NOLLON/L 3SY8 IVHOJdINAL

NOLLONNS 3Svd

NOLLONNA 3Svq



100
90
80
70
60
50
40
30
20
10

1

5

10 15

NUMBER OF COMPONENTS

20









